[1] Schiedel M, Robaa D, Rumpf T, et al.The Current State of NAD(+)-Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets[J]. Medicinal research reviews, 2018, 38(1): 147-200. [2] 韩可琪,阮昕,贺明.SIRT2在肝癌发生发展中的作用[J]. 上海交通大学学报(医学版)[J]. 2018, 38(10): 1247-1251. [3] Liu G, Park S H, Imbesi M, et al.Loss of NAD-Dependent Protein Deacetylase Sirtuin-2 Alters Mitochondrial Protein Acetylation and Dysregulates Mitophagy[J]. Antioxidants & redox signaling, 2017, 26(15): 849-863. [4] Lin S, Xing H, Zang T, et al.Sirtuins in mitochondrial stress: Indispensable helpers behind the scenes[J]. Ageing research reviews, 2018, 44: 22-32. [5] Yang Y, Liu Y, Wang Y, et al.Regulation of SIRT1 and Its Roles in Inflammation[J]. Frontiers in immunology, 2022, 13: 831168. [6] Wang S, Zhang J, Deng X, et al.Advances in characterization of SIRT3 deacetylation targets in mitochondrial function[J]. Biochimie, 2020, 179: 1-13. [7] Hu S, Wang S.The Role of SIRT3 in the Osteoporosis[J]. Frontiers in endocrinology, 2022, 13: 893678. [8] Min Z, Gao J, Yu Y.The Roles of Mitochondrial SIRT4 in Cellular Metabolism[J]. Frontiers in endocrinology, 2018, 9: 783. [9] Polletta L, Vernucci E, Carnevale I, et al.SIRT5 regulation of ammonia-induced autophagy and mitophagy[J]. Autophagy, 2015, 11(2): 253-270. [10] Li W, Feng W, Su X, et al.SIRT6 protects vascular smooth muscle cells from osteogenic transdifferentiation via Runx2 in chronic kidney disease[J]. The Journal of clinical investigation, 2022, 132(1). [11] Lagunas-Rangel F A. SIRT7 in the aging process[J]. Cellular and molecular life sciences: CMLS, 2022, 79(6): 297. [12] Zhang H, Head P E, Yu D S.SIRT2 orchestrates the DNA damage response[J]. Cell cycle (Georgetown, Tex), 2016, 15(16): 2089-2090. [13] North B J, Verdin E.Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis[J]. PloS one, 2007, 2(8): e784. [14] Inoue T, Hiratsuka M, Osaki M, et al.SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress[J]. Oncogene, 2007, 26(7): 945-957. [15] Zhang X, Brachner A, Kukolj E, et al.SIRT2 deacetylates GRASP55 to facilitate post-mitotic Golgi assembly[J]. Journal of cell science, 2019, 132(21). [16] Muth V, Nadaud S, Grummt I, et al.Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription[J]. The EMBO Journal, 2001, 20(6): 1353-1362. [17] Ishfaq M, Maeta K, Maeda S, et al.The role of acetylation in the subcellular localization of an oncogenic isoform of translation factor eIF5A[J]. Bioscience, biotechnology, and biochemistry, 2012, 76(11): 2165-2167. [18] Zhou F, Zhang L, Zhu K, et al.SIRT2 ablation inhibits glucose-stimulated insulin secretion through decreasing glycolytic flux[J]. Theranostics, 2021, 11(10): 4825-4838. [19] Watanabe H, Inaba Y, Kimura K, et al.Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein[J]. Nature communications, 2018, 9(1): 30. [20] Tang X, Chen X F, Wang N Y, et al.SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy[J]. Circulation, 2017, 136(21): 2051-2067. [21] Ren Y R, Ye Y L, Feng Y, et al.SL010110, a lead compound, inhibits gluconeogenesis via SIRT2-p300-mediated PEPCK1 degradation and improves glucose homeostasis in diabetic mice[J]. Acta pharmacologica Sinica, 2021, 42(11): 1834-1846. [22] Yang X, Park S H, Chang H C, et al.Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2[J]. The Journal of clinical investigation, 2017, 127(4): 1505-1516. [23] Braunwald E.Cardiomyopathies: An Overview[J]. Circulation research, 2017, 121(7): 711-721. [24] Marian A J, Braunwald E.Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy[J]. Circulation research, 2017, 121(7): 749-770. [25] Greco C M, Condorelli G.Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure[J]. Nature reviews Cardiology, 2015, 12(8): 488-497. [26] Zaha V G, Young L H.AMP-activated protein kinase regulation and biological actions in the heart[J]. Circulation research, 2012, 111(6): 800-814. [27] Chen C, Kassan A, Castaneda D, et al.Metformin prevents vascular damage in hypertension through the AMPK/ER stress pathway[J]. Hypertension research: official journal of the Japanese Society of Hypertension, 2019, 42(7): 960-969. [28] Fassett J T, Hu X, Xu X, et al.AMPK attenuates microtubule proliferation in cardiac hypertrophy[J]. American journal of physiology Heart and circulatory physiology,2013, 304(5): H749-758. [29] Zeng C, Duan F, Hu J, et al.NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy[J]. Redox biology, 2020, 34: 101523. [30] He M, Chiang H H, Luo H, et al. An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance[J]. Cell metabolism, 2020, 31(3): 580-591.e585. [31] Sun X, Duan J, Gong C, et al.Colchicine Ameliorates Dilated Cardiomyopathy Via SIRT2-Mediated Suppression of NLRP3 Inflammasome Activation[J]. Journal of the American Heart Association, 2022, 11(13): e025266. [32] Zheng M, Du X, Zhao L, et al.Elevated plasma Sirtuin2 level predicts heart failure after acute myocardial infarction[J]. Journal of thoracic disease, 2021, 13(1): 50-59. [33] Sarikhani M, Maity S, Mishra S, et al.SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis[J]. The Journal of biological chemistry, 2018, 293(14): 5281-5294. [34] Braunwald E.Heart failure[J]. JACC Heart failure, 2013, 1(1): 1-20. [35] North B J, Rosenberg M A, Jeganathan K B, et al.SIRT2 induces the checkpoint kinase BubR1 to increase lifespan[J]. The EMBO journal, 2014, 33(13): 1438-1453. [36] Yang W, Gao F, Zhang P, et al.Functional genetic variants within the SIRT2 gene promoter in acute myocardial infarction[J]. PloS one, 2017, 12(4): e0176245. [37] Katare P B, Nizami H L, Paramesha B, et al.Activation of toll like receptor 4 (TLR4) promotes cardiomyocyte apoptosis through SIRT2 dependent p53 deacetylation[J]. Scientific reports, 2020, 10(1): 19232. [38] Mason F E, Pronto J R D, Alhussini K, et al. Cellular and mitochondrial mechanisms of atrial fibrillation[J]. Basic research in cardiology, 2020, 115(6): 72. [39] Li Y, Liang P, Jiang B, et al.CARD9 promotes autophagy in cardiomyocytes in myocardial ischemia/reperfusion injury via interacting with Rubicon directly[J]. Basic research in cardiology, 2020, 115(3): 29. [40] Xu S, Ilyas I, Little P J, et al.Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies[J]. Pharmacological reviews, 2021, 73(3): 924-967. [41] Sabbatinelli J, Prattichizzo F, Olivieri F, et al.Where Metabolism Meets Senescence: Focus on Endothelial Cells[J]. Frontiers in physiology, 2019, 10: 1523. [42] Münzel T, Camici G G, Maack C, et al.Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series[J]. Journal of the American College of Cardiology, 2017, 70(2): 212-229. [43] Jagtap P, Szabó C.Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors[J]. Nature reviews Drug discovery, 2005, 4(5): 421-440. [44] Henning R J, Bourgeois M, Harbison R D.Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders[J]. Cardiovascular toxicology, 2018, 18(6): 493-506. [45] Hans C P, Zerfaoui M, Naura A S, et al.Differential effects of PARP inhibition on vascular cell survival and ACAT-1 expression favouring atherosclerotic plaque stability[J]. Cardiovascular research, 2008, 78(3): 429-439. [46] Zhang N, Zhang Y, Miao W, et al.An unexpected role for BAG3 in regulating PARP1 ubiquitination in oxidative stress-related endothelial damage[J]. Redox biology, 2022, 50: 102238. [47] Zhang W, Liu D, Ren J, et al.Overexpression of Sirtuin2 prevents high glucose-induced vascular endothelial cell injury by regulating the p53 and NF-κB signaling pathways[J]. Biotechnology letters, 2018, 40(2): 271-278. [48] Falk E.Pathogenesis of atherosclerosis[J]. Journal of the American College of Cardiology, 2006, 47(8 Suppl): C7-12. [49] Dzau V J.Pathobiology of atherosclerosis and plaque complications[J]. American heart journal, 1994, 128(6 Pt 2): 1300-1304. [50] Macparland S A, Tsoi K M, Ouyang B, et al.Phenotype Determines Nanoparticle Uptake by Human Macrophages from Liver and Blood[J]. ACS nano, 2017, 11(3): 2428-2443. [51] Fang S, Xu Y, Zhang Y, et al.Irgm1 promotes M1 but not M2 macrophage polarization in atherosclerosis pathogenesis and development[J]. Atherosclerosis, 2016, 251: 282-290. [52] Zhang B, Ma Y, Xiang C.SIRT2 decreases atherosclerotic plaque formation in low-density lipoprotein receptor-deficient mice by modulating-macrophage polarization[J]. Biomed Pharmacother, 2018, 97: 1238-1242. |