[1] Zhang M, Zhou Y, Chen L, et al. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation [J]. Histochem Cell Biol, 2016, No.2): 119-130. [2] 姚雯, 赵金河. 冠心病介入治疗术后再狭窄防治的研究进展[J]. 中西医结合心脑血管病杂志, 2018, 16(23): 3456-3458. [3] 李丹,颜渊鸳, 欧和生. 微小RNA在调控血管平滑肌细胞凋亡与心血管疾病的联系与临床应用[J]. 中国药学杂志, 2019, 54(08): 603-607. [4] Simonson B, Das S. MicroRNA Therapeutics: the Next Magic Bullet[J]. Mini Rev Med Chem, 2015, No.6): 467-474. [5] Tang Y, Xu Q, Peng H, et al. The role of vascular peroxidase 1 in ox-LDL-induced vascular smooth muscle cell calcification [J]. Atherosclerosis, 2015, No.2): 357-363. [6] FM, J Y, Q M, et al. Expression status and clinical significance of lncRNA APPAT in the progression of atherosclerosis[J]. Peerj, 2018, e4246. [7] KS M, M L, K S, et al. PTEN deficiency promotes pathological vascular remodeling of human coronary arteries[J]. JCI Insight, 2018,4. [8] H H, CL W, LA W, et al. Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation[J]. Nat Commun, 2016, 10830. [9] Yuan M, Wang X, Zhan Q, et al. Association of PTEN genetic polymorphisms with atherosclerotic cerebral infarction in the Han Chinese population[J]. J Clin Neurosci, 2012,12:1641-1645. [10] Martini M, DeSantis M C, Braccini L, et al. PI3K/AKT signaling pathway and cancer: An updated review[J]. Ann Med, 2014,5-6. [11] Zhai C, Cheng J, Mujahid H, et al. Selective Inhibition of PI3K/Akt/mTOR Signaling Pathway Regulates Autophagy of Macrophage and Vulnerability of Atherosclerotic Plaque[J]. PLoS One, 2014,3. [12] Carnero A, Blanco-Aparicio C, Renner O, et al. The PTEN/PI3K/AKT Signalling Pathway in Cancer, Therapeutic Implications[J]. Curr Cancer Drug Targets, 2008,3:187-198. [13] Xu C X, Xu L, Peng F Z, et al. MiR-647 promotes proliferation and migration of ox-LDL-treated vascular smooth muscle cells through regulating PTEN/PI3K/AKT pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(16): 7110-7119. [14] Nyberg S T, Fransson E I, Heikkil? K, et al. Job Strain and Cardiovascular Disease Risk Factors: Meta-Analysis of Individual-Participant Data from 47,000 Men and Women[J]. PLoS One, 2013, 2013. [15] Zhang B, Zhang G, Wei T, et al. MicroRNA-25 protects smooth muscle cells against corticosterone-induced apoptosis(Article)[J]. Oxid Med Cell Longev, 2019 [16] Huang F, Li M, Fang Z, et al. Overexpression of MicroRNA-1 Improves the Efficacy of Mesenchymal Stem Cell Transplantation after Myocardial Infarction[J]. Cardiology, 2013,1: 18-30. [17] Di Y, Zhang D, Hu T, et al. miR-23 regulate the pathogenesis of patients with coronary artery disease[J]. Int J Clin Exp Med, 2015,7: 11759-1169. [18] Liu L, Cheng Z, Yang J. miR-23 regulates cell proliferation and apoptosis of vascular smooth muscle cells in coronary heart disease [J]. Pathol Res Pract, 2018, No.11): 1873-1878. [19] Tian P, Yan L. Inhibition of MicroRNA-149-5p Induces Apoptosis of Acute Myeloid Leukemia Cell Line THP-1 by Targeting Fas Ligand (FASLG)[J]. Med Sci Monit, 2016, 5116-5123. [20] Grieco F A, Sebastiani G, Juan-Mateu J, et al. MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p Regulate the Expression of Proapoptotic BH3-Only Proteins DP5 and PUMA in Human Pancreatic β-Cells[J]. Diabetes (DIABETES), 2017,1: 100-112. [21] Jin L, 2,3, Li Y, 2,3, Liu J, 3,4, et al. Tumor suppressor miR-149-5p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma[J]. Mol Med Report, 2016,6: 5386-5392. [22] Li C, Ni J, Liu Y-X, et al. Response of MiRNA-22-3p and MiRNA-149-5p to Folate Deficiency and the Differential Regulation of MTHFR Expression in Normal and Cancerous Human Hepatocytes[J]. PLoS One, 2017, 2017. [23] Zhang B, Dong Y, Liu M, et al. miR-149-5p Inhibits Vascular Smooth Muscle Cells Proliferation, Invasion, and Migration by Targeting Histone Deacetylase 4 (HDAC4)[J]. Med Sci Monit, 2019, 7581-7590. [24] Guida N, Laudati G, Mascolo L, et al. p38/Sp1/Sp4/HDAC4/BDNF Axis Is a Novel Molecular Pathway of the Neurotoxic Effect of the Methylmercury [J]. Front Neurosci, 2017 [25] Yang Z, Liu Y, Qin L, et al. Cathepsin H-Mediated Degradation of HDAC4 for Matrix Metalloproteinase Expression in Hepatic Stellate Cells: Implications of Epigenetic Suppression of Matrix Metalloproteinases in Fibrosis through Stabilization of Class IIa Histone Deacetylases[J]. Am J Pathol, 2017,4:781-97. [26] Liu Q, Zhang X, Yin C, et al. HDAC4 is expressed on multiple T cell lineages but dispensable for their development and function[J]. Oncotarget, 2017,11: 17562-17572. [27] Hu W, Chang G, Zhang M, et al. MicroRNA-125a-3p affects smooth muscle cell function in vascular stenosis[J]. J Mol Cell Cardiol, 2019, 85-94. [28] Sun Y, Liu W-Z, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis[J]. J Recept Signal Transduct Res, 2015,6: 600-604. [29] Deschênes-Simard X, Kottakis F, Meloche S, et al. ERKs in Cancer: Friends or Foes?[J]. Cancer Res, 2014,2: 412-419. [30] Leeper* N J, Raiesdana A, Kojima Y, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function[J]. J Cell Physiol, 2011,4: 1035-1043. [31] B I, P D, MW F. An emerging role for the miR-26 family in cardiovascular disease[J]. Trends Cardiovasc Med, 2014,6: 241-248. [32] Watterston C, Zeng L, Onabadejo A, et al. MicroRNA26 attenuates vascular smooth muscle maturation via endothelial bmp signalling(Article)[J]. PLoS Genetics, 2019,5. |