[1] Brown T, Mann B, Ryder N, et al.Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-901. [2] Diseases N C F C, Health T W C O T R O C, China D I. 中国心血管健康与疾病报告2023概要[J]. 中国循环杂志, 2024, 39(7): 625-60. [3] Han C, Kim D W, Kim S, et al.Evaluation of GPT-4 for 10-year cardiovascular risk prediction: Insights from the UK Biobank and KoGES data[J]. iScience, 2024, 27(2): 109022. [4] GüNay S, öZtüRk A, öZerol H, et al. Comparison of emergency medicine specialist, cardiologist, and chat-GPT in electrocardiography assessment[J]. Am J Emerg Med, 2024, 80: 51-60. [5] Dorfner F J, JüRgensen L, Donle L, et al. Comparing Commercial and Open-Source Large Language Models for Labeling Chest Radiograph Reports[J]. Radiology, 2024, 313(1): e241139. [6] Kaya K, Gietzen C, Hahnfeldt R, et al.Generative Pre-trained Transformer 4 analysis of cardiovascular magnetic resonance reports in suspected myocarditis: A multicenter study[J]. J Cardiovasc Magn Reson, 2024, 26(2): 101068. [7] Salam B, Kravchenko D, Nowak S, et al.Generative Pre-trained Transformer 4 makes cardiovascular magnetic resonance reports easy to understand[J]. J Cardiovasc Magn Reson, 2024, 26(1): 101035. [8] Hoppe J M, Auer M K, StrüVen A, et al. ChatGPT With GPT-4 Outperforms Emergency Department Physicians in Diagnostic Accuracy: Retrospective Analysis[J]. J Med Internet Res, 2024, 26: e56110. [9] Reyes-Rivera J, Castro Molina A, Romero-Lorenzo M, et al. Evaluating the Clinical Reasoning of GPT-4, Grok,Gemini in Different Fields of Cardiology [J]. Circulation, 2024, 150(Suppl_1): A4147550-A. [10] Feleki A, Apostolopoulos I D, Moustakidis S, et al.Explainable Deep Fuzzy Cognitive Map Diagnosis of Coronary Artery Disease: Integrating Myocardial Perfusion Imaging, Clinical Data, and Natural Language Insights[J]. Applied Sciences, 2023, 13(21): 11953. [11] Novak A, Zeljković I, Rode F, et al. The pulse of artificial intelligence in cardiology: a comprehensive evaluation of state-of-the-art large language models for potential use in clinical cardiology [J]. medRxiv, 2023: 2023.08. 08.23293689. [12] Salihu A, Meier D, Noirclerc N, et al.A study of ChatGPT in facilitating Heart Team decisions on severe aortic stenosis[J]. EuroIntervention, 2024, 20(8): e496-e503. [13] Fang Y, Ryan P, Weng C.Knowledge-guided generative artificial intelligence for automated taxonomy learning from drug labels[J]. J Am Med Inform Assoc, 2024, 31(9): 2065-2075. [14] Jo E, Song S, Kim J H, et al.Assessing GPT-4's Performance in Delivering Medical Advice: Comparative Analysis With Human Experts[J]. JMIR Med Educ, 2024, 10: e51282. [15] Scheschenja M, Viniol S, Bastian M B, et al.Feasibility of GPT-3 and GPT-4 for in-Depth Patient Education Prior to Interventional Radiological Procedures: A Comparative Analysis[J]. CardioVascular and Interventional Radiology, 2024, 47(2): 245-250. [16] Anton Danholt L, Tobias H, Anna S-K, et al.Heart-to-heart with ChatGPT: the impact of patients consulting AI for cardiovascular health advice[J]. Open Heart, 2023, 10(2): e002455. [17] Mishra V, Sarraju A, Kalwani N M, et al.Evaluation of Prompts to Simplify Cardiovascular Disease Information Generated Using a Large Language Model: Cross-Sectional Study[J]. J Med Internet Res, 2024, 26: e55388. [18] Sarraju A.Evaluating misinformation regarding cardiovascular disease prevention obtained on a popular, publicly accessible artificial intelligence model (GPT-4)[J]. American Journal of Preventive Cardiology, 2024, 19: 100806. [19] Ronquillo J G, Ye J, Gorman D, et al.Practical Aspects of Using Large Language Models to Screen Abstracts for Cardiovascular Drug Development: Cross-Sectional Study[J]. JMIR Med Inform, 2024, 12: e64143. [20] Pabon M A, Vaduganathan M, Claggett B L, et al.In-hospital course of patients with heart failure with improved ejection fraction in the DELIVER trial[J]. Eur J Heart Fail, 2024, 26(12): 2532-40. [21] Builoff V, Shanbhag A, Miller R J, et al.Evaluating AI proficiency in nuclear cardiology: Large language models take on the board preparation exam[J]. J Nucl Cardiol, 2024: 102089. [22] Ebel S, Ehrengut C, Denecke T, et al.GPT-4o’s competency in answering the simulated written European Board of Interventional Radiology exam compared to a medical student and experts in Germany and its ability to generate exam items on interventional radiology: a descriptive study[J]. J Educ Eval Health Prof, 2024, 21: 21. |