摘要: 心血管疾病是世界范围内死亡率及发病率最高的疾病之一,尽管诊断及治疗技术迅猛发展,但其临床预后仍然不佳。从基因调控的角度来诊断和治疗心血管疾病被认为是一种新的突破。而随着科学研究的深入,非编码RNA在人体生物活动中发挥重要作用,近年来尤其对于microRNA的机制研究越来越多。本文总结了microRNA的生物学特性及其在心血管疾病中的研究应用,以期为心血管疾病的诊断和治疗提供新思路。
甘志新, 胡雍军, 杨倩, 黄建波. MicroRNA在心血管疾病中的研究进展[J]. 心血管病防治知识, 2025, 15(5): 137-144.
[1] Zhou S, Jin J, Wang J, et al.miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges[J]. Acta Pharmacol Sin, 2018, 39:1073-1084. [2] Rinn JL, Chang HY.Genome Regulation by Long Noncoding RNAs[J]. Annu Rev Biochem, 2012, 81:145-166. [3] Bagga S, Bracht J, Hunter S, et al.Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation[J]. Cell, 2005, 122:553-563. [4] Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Res, 2014, 42:D68-D73. [5] Condorelli G, Latronico MV, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead[J]. J Am Coll Cardiol, 2014, 63:2177-2187. [6] Karaca E, Aykut A, Erturk B, et al.MicroRNA Expression Profile in the Prenatal Amniotic Fluid Samples of Pregnant Women with Down Syndrome[J]. Balkan Med J, 2018, 35:163-166. [7] Bartel DP.MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116:281-297. [8] Mann DL.MicroRNAs and the Failing Heart[J]. The New England journal of medicine, 2007, 356:2644-2645. [9] Diehl P, Fricke A, Sander L, et al.Microparticles: major transport vehicles for distinct microRNAs in circulation[J]. Cardiovasc Res, 2012, 93:633-644. [10] Vickers KC, Palmisano BT, Shoucri BM, et al.MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins[J]. Nat Cell Biol, 2011, 13:423-433. [11] Mitchell PS, Parkin RK, Kroh EM, et al.Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A, 2008, 105:10513-10518. [12] Hata A.Functions of microRNAs in cardiovascular biology and disease[J]. Annu Rev Physiol, 2013, 75:69-93. [13] Panwalkar P, Khire A, Shirsat N.Quantification of microRNAs in Cells and Tissues Using Stem-Loop RT PCR and qPCR. In: Dey A, Malhotra A, Garg N, eds. New York, NY: Springer US,, 2022:51-58. [14] Ule J, Jensen K, Mele A, Darnell RB.CLIP: A method for identifying protein-RNA interaction sites in living cells[J]. Methods (San Diego, Calif.), 2005, 37:376-386. [15] Zhao J, Ohsumi TK, Kung JT, et al.Genome-wide Identification of Polycomb-Associated RNAs by RIP-seq[J]. Mol Cell, 2010, 40:939-953 [16] Bittencourt D, Auboeuf D.Analysis of Co-transcriptional RNA Processing by RNA-ChIP Assay. In: Vancura A, ed. New York, NY: Springer New York,, 2012:563-577. [17] Liu C, Calin GA, Meloon B, et al.An Oligonucleotide Microchip for Genome-Wide MicroRNA Profiling in Human and Mouse Tissues. Proceedings of the National Academy of Sciences - PNAS, 2004, 101:9740-9744. [18] Babak T, Zhang W, Morris Q, et al.Probing microRNAs with microarrays: tissue specificity and functional inference[J]. RNA, 2004, 10:1813-1819. [19] Mortazavi A, Wold B, Williams BA, et al.Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods, 2008, 5:621-628. [20] Sayed D, Abdellatif M.MicroRNAs in development and disease[J]. PHYSIOL REV, 2011, 91:827-887. [21] Xin M, Small EM, Sutherland LB, et al.MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury[J]. Gene Dev, 2009,23:2166-2178. [22] Meberg A, Lindberg H, Thaulow E.Congenital heart defects: The patients who die[J]. Acta Paediatr, 2005, 94:1060-1065. [23] Smith T, Rajakaruna C, Caputo M, et al.MicroRNAs in congenital heart disease[J]. Annals of translational medicine, 2015, 3:333. [24] OʼBrien JE, Kibiryeva N, Zhou X, et al. Noncoding RNA Expression in Myocardium From Infants With Tetralogy of Fallot[J]. Circulation. Cardiovascular genetics, 2012, 5:279-286. [25] Nagy O, Barath S, Ujfalusi A.The role of microRNAs in congenital heart disease[J]. Ejifcc, 2019, 30:165-178. [26] Nigam V, Sievers HH, Jensen BC, et al.Altered microRNAs in bicuspid aortic valve: a comparison between stenotic and insufficient valves[J]. J Heart Valve Dis, 2010, 19:459-465. [27] Zhu S, Cao L, Zhu J, et al.Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects[J]. Clin Chim Acta, 2013, 424:66-72. [28] Arunachalam G, Upadhyay R, Ding H, et al.MicroRNA Signature and Cardiovascular Dysfunction[J]. J Cardiovasc Pharm, 2015, 65:419-429. [29] Thum T, Catalucci D, Bauersachs J.MicroRNAs: novel regulators in cardiac development and disease[J]. Cardiovasc Res, 2008, 79:562-570 [30] Duggirala A, Delogu F, Angelini TG, et al.Non coding RNAs in aortic aneurysmal disease[J]. Front Genet, 2015, 6:125. [31] Liao MMP, Zou SM, Weng JM, et al.A microRNA profile comparison between thoracic aortic dissection and normal thoracic aorta indicates the potential role of microRNAs in contributing to thoracic aortic dissection pathogenesis[J]. J Vasc Surg, 2011, 53:1341-1349. [32] Maegdefessel L.The emerging role of micro RNAs in cardiovascular disease[J]. J Intern Med, 2014, 276:633-644. [33] Wienholds E, Plasterk RHA.MicroRNA function in animal development[J]. Febs Lett, 2005, 579:5911-5922. [34] Bátkai S, Thum T.MicroRNAs in Hypertension: Mechanisms and Therapeutic Targets[J]. Curr Hypertens Rep, 2012, 14:79-87. [35] Li WY, Jin J, Chen J, et al.Circulating microRNAs as potential non-invasive biomarkers for the early detection of hypertension-related stroke[J]. J Hum Hypertens, 2014, 28:288-291. [36] Long G, Wang F, Li H, et al.Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans[J]. Bmc Neurol, 2013, 13:178. [37] Simonneau G, Gatzoulis MA, Adatia I, et al.Updated clinical classification of pulmonary hypertension[J]. J Am Coll Cardiol, 2013, 62:D34-D41. [38] Zhou G, Chen T, Raj JU.MicroRNAs in pulmonary arterial hypertension[J]. Am J Respir Cell Mol Biol, 2015, 52:139-151. [39] Rhodes CJ, Wharton J, Boon RA, et al.Reduced microRNA-150 is associated with poor survival in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2013, 187:294-302. [40] Schlosser K, White RJ, Stewart DJ. miR-26a linked to pulmonary hypertension by global assessment of circulating extracellular microRNAs[J]. Am J Resp Crit Care, 2013, 188:1472-1475. [41] Yao Y, Du J, Cao X, et al.Plasma Levels of MicroRNA-499 Provide an Early Indication of Perioperative Myocardial Infarction in Coronary Artery Bypass Graft Patients: e104618. Plos One, 2014, 9:e104618. [42] D'Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction[J]. Eur Heart J, 2010, 31:2765-2773. [43] Widera C, Gupta SK, Lorenzen JM, et al.Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome[J]. J Mol Cell Cardiol, 2011, 51:872-875. [44] Grabmaier U, Clauss S, Gross L, et al.Diagnostic and prognostic value of miR-1 and miR-29b on adverse ventricular remodeling after acute myocardial infarction - The SITAGRAMI-miR analysis[J]. Int J Cardiol, 2017, 244:30-36. [45] Bauters C, Kumarswamy R, Holzmann A, et al.Circulating miR-133a and miR-423-5p fail as biomarkers for left ventricular remodeling after myocardial infarction[J]. Int J Cardiol, 2013, 168:1837-1840. [46] Wang R, Li N, Zhang Y, et al.Circulating MicroRNAs are Promising Novel Biomarkers of Acute Myocardial Infarction[J]. Internal Med, 2011, 50:1789-1795. [47] Cheng Y, Tan N, Yang J, et al.A translational study of circulating cell-free microRNA-1 in acute myocardial infarction[J]. Clin Sci (Lond), 2010, 119:87-95. [48] Lv P, Zhou M, He J, et al.Circulating miR-208b and miR-34a are associated with left ventricular remodeling after acute myocardial infarction[J]. Int J Mol Sci, 2014, 15:5774-5788. [49] Coskunpinar E, Cakmak HA, Kalkan AK, et al.Circulating miR-221-3p as a novel marker for .early prediction of acute myocardial infarction[J]. Gene, 2016, 591:90-96 [50] Townley-Tilson WHD, Callis TE, Wang D.MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease[J]. The international journal of biochemistry & cell biology, 2010, 42:1252-1255. [51] Liu X, Dong Y, Chen S, et al.Circulating MicroRNA-146a and MicroRNA-21 Predict Left Ventricular Remodeling after ST-Elevation Myocardial Infarction[J]. Cardiology, 2015, 132:233-241. [52] Navickas R, Gal D, Laucevicius A, et al.Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review[J]. Cardiovasc Res, 2016, 111:322-337. [53] Devaux Y, Mueller M, Haaf P, et al.Diagnostic and prognostic value of circulating micro RNA s in patients with acute chest pain[J]. J Intern Med, 2015, 277:260-271. [54] Zile MR, Mehurg SM, Arroyo JE, et al.Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction[J]. Circ Cardiovasc Genet, 2011, 4:614-619. [55] Komal S, Yin J, Wang S, et al.MicroRNAs: Emerging biomarkers for atrial fibrillation[J]. J Cardiol, 2019, 74:475-482. [56] Feldman A, Moreira D, Gun C, et al.Analysis of Circulating miR-1, miR-23a, and miR-26a in Atrial Fibrillation Patients Undergoing Coronary Bypass Artery Grafting Surgery[J]. Ann Hum Genet, 2017, 81:99-105. [57] Adam O, Löhfelm B, Thum T, et al.Role of miR-21 in the pathogenesis of atrial fibrosis[J]. Basic Res Cardiol, 2012, 107:278. [58] Indolfi C, Iaconetti C, Gareri C, et al.Non-coding RNAs in vascular remodeling and restenosis[J]. Vascul Pharmacol, 2019, 114:49-63. [59] Ji R, Cheng Y, Yue J, et al.MicroRNA Expression Signature and Antisense-Mediated Depletion Reveal an Essential Role of MicroRNA in Vascular Neointimal Lesion Formation[J]. Circ Res, 2007, 100:1579-1588. [60] Wang D, Deuse T, Stubbendorff M, et al.Local MicroRNA Modulation Using a Novel Anti-miR-21-Eluting Stent Effectively Prevents Experimental In-Stent Restenosis[J]. Arteriosclerosis, thrombosis, and vascular biology, 2015, 35:1945-1953. [61] Stojkovic S, Jurisic M, Kopp CW, et al.Circulating microRNAs identify patients at increased risk of in-stent restenosis after peripheral angioplasty with stent implantation[J]. Atherosclerosis, 2018, 269:197-203. [62] De Rosa R, De Rosa S, Leistner D, et al.Transcoronary Concentration Gradient of microRNA-133a and Outcome in Patients With Coronary Artery Disease[J]. Am J Cardiol, 2017, 120:15-24. [63] Xiao J, Gao R, Bei Y, et al.Circulating miR-30 d Predicts Survival in Patients with Acute Heart Failure[J]. Cell Physiol Biochem, 2017, 41:865-874. [64] Ovchinnikova ES, Schmitter D, Vegter EL, et al.Signature of circulating microRNAs in patients with acute heart failure[J]. Eur J Heart Fail, 2016, 18:414-423. [65] Bayés Genis A, Lanfear DE, de Ronde MWJ, et al. Prognostic value of circulating microRNAs on heart failure‐related morbidity and mortality in two large diverse cohorts of general heart failure patients[J]. Eur J Heart Fail, 2018, 20:67-75. [66] Cakmak HA, Coskunpinar E, Ikitimur B, et al.The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome-wide expression study[J]. J Cardiovasc Med (Hagerstown), 2015, 16:431-437. [67] Ikitimur B, Cakmak HA, Coskunpinar E, et al.The relationship between circulating microRNAs and left ventricular mass in symptomatic heart failure patients with systolic dysfunction[J]. Kardiol Pol, 2015, 73:740. [68] Goren Y, Kushnir M, Zafrir B, et al.Serum levels of microRNAs in patients with heart failure[J]. Eur J Heart Fail, 2012, 14:147-154. [69] Akat KM, Moore-McGriff D, Morozov P, et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers[J]. Proc Natl Acad Sci U S A, 2014, 111:11151-11156. [70] Bernardo BC, Ooi JYY, Lin RCY, et al.miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart[J]. Future Med Chem, 2015, 7:1771-1792. [71] Poller W, Dimmeler S, Heymans S, et al.Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives[J]. Eur Heart J, 2018, 39:2704-2716. [72] Calway T, Kim GH.Harnessing the Therapeutic Potential of MicroRNAs for Cardiovascular Disease[J]. J Cardiovasc Pharm T, 2015, 20:131-143. [73] Hinkel R, Penzkofer D, Zühlke S, et al.Inhibition of MicroRNA-92a Protects Against Ischemia/Reperfusion Injury in a Large-Animal Model[J]. Circulation (New York, N.Y.), 2013, 128:1066-1075. [74] Jansen F, Yang X, Hoelscher M, et al.Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles[J]. Circulation, 2013, 128:2026-2038. [75] Karakikes I, Chaanine AH, Kang S, et al.Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling[J]. J Am Heart Assoc, 2013, 2:e78. [76] Ganesan J, Ramanujam D, Sassi Y, et al.MiR-378 Controls Cardiac Hypertrophy by Combined Repression of Mitogen-Activated Protein Kinase Pathway Factors[J]. Circulation (New York, N.Y.), 2013, 127:2097-2106. [77] Wahlquist C, Jeong D, Rojas-Muñoz A, et al.Inhibition of miR-25 improves cardiac contractility in the failing heart[J]. Nature (London), 2014, 508:531-535. [78] Li J, Sun S, Zhu D, et al.Inhalable Stem Cell Exosomes Promote Heart Repair After Myocardial Infarction[J]. Circulation (New York, N.Y.), 2024, 150:710. [79] Hutvágner G, Zamore PD.A microRNA in a Multiple-Turnover RNAi Enzyme Complex[J]. Science (American Association for the Advancement of Science), 2002, 297:2056-2060. [80] Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R.Control of translation and mRNA degradation by miRNAs and siRNAs[J]. Genes Dev, 2006, 20:515-524. [81] Izaurralde E, Huntzinger E.Gene silencing by microRNAs: contributions of translational repression and mRNA decay[J]. Nature reviews. Genetics, 2011, 12:99-110. [82] Zapater A, Barbe F, Sanchez-de-la-Torre M. Micro-RNA in obstructive sleep apnoea: biomarker of cardiovascular outcome?[J].Curr Opin Pulm Med, 2022, 28:559-570. [83] Çakmak HA, Demir M, Koçak Z.MicroRNA and Cardiovascular Diseases[J]. Balk Med J, 2020, 37:60-71. |
[1] | 姜歆蕾. 吡拉西坦注射液联合疏血通注射液治疗急性脑梗死患者对认知功能、血脂及炎性因子的影响[J]. 心血管病防治知识, 2025, 15(5): 7-11. |
[2] | 陈建国. 冠脉CTA量化斑块负荷指导冠心病近期预后判断的价值[J]. 心血管病防治知识, 2025, 15(5): 37-40. |
[3] | 生联军, 朱睿琪. 赋能管理方案联合有氧康复训练应用于冠心病PCI术后患者的效果[J]. 心血管病防治知识, 2025, 15(5): 56-58. |
[4] | 边昌贺, 冷德国, 王盛. 离心–膜滤过血浆置换(CFPP)成功治疗顽固性高脂血症一例[J]. 心血管病防治知识, 2025, 15(5): 134-136. |
[5] | 陈佳彬, 白凤鸣, 张红雨. 碱性磷酸酶联合心脏彩超指标对慢性心力衰竭患者的预后预测价值分析[J]. 心血管病防治知识, 2025, 15(4): 23-27. |
[6] | 林豪俊, 戴美苏. 多元化护理在ICU冠心病介入治疗患者中的应用[J]. 心血管病防治知识, 2025, 15(4): 48-51. |
[7] | 许朝建. 高龄冠心病患者行经皮冠状动脉介入治疗术后发生不良心血管事件的影响因素研究[J]. 心血管病防治知识, 2025, 15(4): 56-58. |
[8] | 唐撷宇, 杨旭希, 陈淑玲, 苏敏玲, 苏芝琪, 尹昌. 居家健康管理指导对冠心病并慢性心衰患者生活质量及预后的影响[J]. 心血管病防治知识, 2025, 15(4): 124-127. |
[9] | 张玉, 包金丽. MHR与冠心病严重程度及预后的关系[J]. 心血管病防治知识, 2025, 15(4): 140-144. |
[10] | 许友榜. CPET制定的运动康复治疗对急性冠脉综合征PCI术后患者心功能的影响[J]. 心血管病防治知识, 2025, 15(3): 53-56. |
[11] | 翁发林, 肖世勇, 卢伟, 杜茂林, 徐礼斌, 谭曼, 祝文祥. 基于“行走的医院”模式下高血压同质化管理对重庆山区高血压控制情况的影响[J]. 心血管病防治知识, 2025, 15(3): 60-64. |
[12] | 高漫. 沙库巴曲缬沙坦钠在左心室射血分数保留心力衰竭患者治疗中的应用研究[J]. 心血管病防治知识, 2025, 15(2): 11-14. |
[13] | 黄萍萍. 冠心病合并慢性肾衰竭维持性血液透析患者行经皮冠状动脉介入治疗的效果[J]. 心血管病防治知识, 2025, 15(2): 19-21. |
[14] | 李康. 血流储备分数与血管内超声成像指导下的经皮冠状动脉介入治疗效果对比研究[J]. 心血管病防治知识, 2025, 15(2): 29-32. |
[15] | 周康. 益气复脉注射液联合重组人脑利钠肽在心房颤动伴慢性心力衰竭治疗中的临床效果观察[J]. 心血管病防治知识, 2025, 15(2): 38-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||