[1] |
McDonagh TA, Metra M, Adamo M, et al.2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[J].Eur Heart J,2021,42(36):3599-3726.
|
[2] |
Ponikowski P, Voors AA, Anker SD, et al.2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure[J].European Heart Journal,2016,37(27):2129-2200.
|
[3] |
Kemp CD, Conte JV.The pathophysiology of heart failure[J].Cardiovascular Pathology,2012,21(5):365-371.
|
[4] |
Wright EM.Glucose transport families SLC5 and SLC50[J].Molecular Aspects of Medicine,2013,34(2-3):183-196.
|
[5] |
Lescano CH, Leonardi G, Torres PHP, et al.The sodium-glucose cotransporter-2 (SGLT2) inhibitors synergize with nitric oxide and prostacyclin to reduce human platelet activation[J].Biochemical Pharmacology,2020,182
|
[6] |
Han L, Qu Q, Aydin D, et al.Structure and mechanism of the SGLT family of glucose transporters[J].Nature,2021,601(7892):274-279.
|
[7] |
中国心力衰竭中心联盟专家委员会.心力衰竭SGLT2抑制剂临床应用的中国专家共识[J].临床心血管病杂志,2022,38(8):599-605.
|
[8] |
Kondo H, Akoumianakis I, Badi I, et al.Effects of canagliflozin on human myocardial redox signalling: clinical implications[J].European Heart Journal,2021,42(48):4947-4960.
|
[9] |
Li Y, Xu G.Sodium glucose cotransporter 1 (SGLT1) inhibitors in cardiovascular protection: Mechanism progresses and challenges[J].Pharmacological Research,2022,176
|
[10] |
Díaz-Rodríguez E, Agra RM, Fernández áL, et al.Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability[J].Cardiovascular Research,2018,114(2):336-346.
|
[11] |
廖梦阳,廖玉华,余淼,等.SGLT2抑制剂治疗心力衰竭潜在机制的新认识[J].临床心血管病杂志,2022,38(1):1-6.
|
[12] |
Packer M.Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis[J].Circulation,2022,146(18):1383-1405.
|
[13] |
Zinman B, Wanner C, Lachin JM, et al.Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes[J].New England Journal of Medicine,2015,373(22):2117-2128.
|
[14] |
Neal B, Perkovic V, Mahaffey KW, et al.Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes[J].New England Journal of Medicine,2017,377(7):644-657.
|
[15] |
Wiviott SD, Raz I, Bonaca MP,et al.Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes[J].New England Journal of Medicine,2019,380(4):347-357.
|
[16] |
Cosentino F, Cannon CP, Cherney DZI, et al.Efficacy of Ertugliflozin on Heart Failure-Related Events in Patients With Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease[J].Circulation,2020,142(23):2205-2215.
|
[17] |
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction[J].New England Journal of Medicine,2019,381(21):1995-2008.
|
[18] |
Packer M, Anker SD, Butler J, et al.Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure[J].New England Journal of Medicine,2020,383(15):1413-1424.
|
[19] |
Anker SD, Butler J, Filippatos G, et al.Empagliflozin in Heart Failure with a Preserved Ejection Fraction[J].New England Journal of Medicine,2021,385(16):1451-1461.
|
[20] |
Bhatt DL, Szarek M, Steg PG, et al.Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure[J].New England Journal of Medicine,2021,384(2):117-128.
|
[21] |
Solomon SD, McMurray JJV, Claggett B, et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction[J].New England Journal of Medicine,2022,387(12):1089-1098.
|
[22] |
ElSayed NA, Aleppo G, Aroda VR, et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2023[J].Diabetes Care,2023,46(Supplement_1):S140-S157.
|
[23] |
Heidenreich PA, Bozkurt B, Aguilar D, et al.2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J].Circulation,2022,145(18)
|